Counting labelled trees with given indegree sequence

نویسندگان

  • Rosena R. X. Du
  • Jingbin Yin
چکیده

For a labelled tree on the vertex set [n] := {1, 2, . . . , n}, define the direction of each edge ij to be i → j if i < j. The indegree sequence of T can be considered as a partition λ ⊢ n − 1. The enumeration of trees with a given indegree sequence arises in counting secant planes of curves in projective spaces. Recently Ethan Cotterill conjectured a formula for the number of trees on [n] with indegree sequence corresponding to a partition λ. In this paper we give two proofs of Cotterill’s conjecture: one is “semi-combinatorial” based on induction, the other is a bijective proof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Oriented Noncrossing Trees

We define an orientation on the edges of a noncrossing tree induced by the labels: for a noncrossing tree (i.e., the edges do not cross) with vertices 1, 2, . . . , n arranged on a circle in this order, all edges are oriented towards the vertex whose label is higher. The main purpose of this paper is to study the distribution of noncrossing trees with respect to the indegree and outdegree seque...

متن کامل

A bijective enumeration of labeled trees with given indegree sequence

For a labeled tree on the vertex set {1, 2, . . . , n}, the local direction of each edge (i j) is from i to j if i < j. For a rooted tree, there is also a natural global direction of edges towards the root. The number of edges pointing to a vertex is called its indegree. Thus the local (resp. global) indegree sequence λ = 1e2e . . . of a tree on the vertex set {1, 2, . . . , n} is a partition o...

متن کامل

Labeled Trees, Functions, and an Algebraic Identity

We give a short and direct proof of a remarkable identity that arises in the enumeration of labeled trees with respect to their indegree sequence, where all edges are oriented from the vertex with lower label towards the vertex with higher label. This solves a problem posed by Shin and Zeng in a recent article. We also provide a generalization of this identity that translates to a formula for t...

متن کامل

Proof of Two Combinatorial Results Arising in Algebraic Geometry

For a labeled tree on the vertex set [n] := {1, 2, . . . , n}, define the direction of each edge ij as i → j if i < j. The indegree sequence λ = 1122 . . . is then a partition of n−1. Let aλ be the number of trees on [n] with indegree sequence λ. In a recent paper (arXiv:0706.2049v2) Cotterill stumbled across the following two remarkable formulas aλ = (n− 1)! (n− k)!e1!(1!)1e2!(2!)2 . . . and

متن کامل

Asymptotic behaviour of permutations avoiding generalized patterns

Visualizing permutations as labelled trees allows us to to specify restricted permutations, and to analyze their counting sequence. The asymptotic behaviour for permutations that avoid a given pattern is given by the Stanley-Wilf conjecture, which was proved by Marcus and Tardos in 2005. Another interesting question is the occurence of generalized patterns, i.e. patterns containing subwords. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2010